Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Infect ; 88(5): 106153, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588960

RESUMO

OBJECTIVES: This study investigated the prevalence, genetic diversity, and evolution of human respiratory syncytial virus (HRSV) in Barcelona from 2013 to 2023. METHODS: Respiratory specimens from patients with RTI suspicion at Hospital Universitari Vall d'Hebron were collected from October 2013 to May 2023 for laboratory-confirmation of respiratory viruses. Next-generation sequencing was performed in randomly-selected samples with Illumina technology. Phylogenetic analyses of whole genome sequences were performed with BEAST v1.10.4. Signals of selection and evolutionary pressures were inferred by population dynamics and evolutionary analyses. Mutations in major surface proteins were genetic and structurally characterised, emphasizing those within antigenic epitopes. RESULTS: Analyzing 139,625 samples, 5.3% were HRSV-positive (3008 HRSV-A, 3882 HRSV-B, 56 HRSV-A and -B, and 495 unsubtyped HRSV), with a higher prevalence observed in the paediatric population. Pandemic-related shifts in seasonal patterns returned to normal in 2022-2023. A total of 198 whole-genome sequences were obtained for HRSV-A (6.6% of the HRSV-A positive samples) belonging to GA2.3.5 lineage. For HRSV-B, 167 samples were sequenced (4.3% of the HRSV-B positive samples), belonging to GB5.0.2, GB5.0.4a and GB5.0.5a. HRSV-B exhibited a higher evolution rate. Post-SARS-CoV-2 pandemic, both subtypes showed increased evolutionary rates and decreased effective population size initially, followed by a sharp increase. Analyses indicated negative selective pressure on HRSV. Mutations in antigenic epitopes, including S276N and M274I in palivizumab-targeted site II, and I206M, Q209R, and S211N in nirsevimab-targeted site Ø, were identified. DISCUSSION: Particularly in the context of the large-scale use in 2023-2024 season of nirsevimab, continuous epidemiological and genomic surveillance is crucial.

2.
Curr Opin Biotechnol ; 84: 103018, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924687

RESUMO

Human disturbances are altering the biosphere in unprecedented ways. Yet, the precise picture of how these disturbances are altering the biosphere and the consequences for humans and the planet reamain undefined. The knowledge and tools to quantify these impacts are often dispersed across traditionally independent scientific disciplines. This special issue brings together a large diversity of topics and global experts under the common theme of using novel advances and tools to gauge the human footprint on the biosphere. The topics discussed illustrate how the integration of novel tools and approaches is key to quantify and address the most pressing environmental issues affecting our planet today and their potential consequences for humans. The global scope of this special issue provides a roadmap to address these challenges in a diverse range of environments and types of anthropogenetic disturbances.

3.
Microorganisms ; 11(8)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37630674

RESUMO

Citrobacter werkmanii is an emerging and opportunistic human pathogen found in developing countries and is a causative agent of wound, urinary tract, and blood infections. The present study conducted comparative genomic analyses of a C. werkmanii strain collection from diverse geographical locations and sources to identify the relevant virulence and antimicrobial resistance genes. Pangenome analyses divided the examined C. werkmanii strains into five distinct clades; the subsequent classification identified genes with functional roles in carbohydrate and general metabolism for the core genome and genes with a role in secretion, adherence, and the mobilome for the shell and cloud genomes. A maximum-likelihood phylogenetic tree with a heatmap, showing the virulence and antimicrobial genes' presence or absence, demonstrated the presence of genes with functional roles in secretion systems, adherence, enterobactin, and siderophore among the strains belonging to the different clades. C. werkmanii strains in clade V, predominantly from clinical sources, harbored genes implicated in type II and type Vb secretion systems as well as multidrug resistance to aminoglycoside, beta-lactamase, fluoroquinolone, phenicol, trimethoprim, macrolides, sulfonamide, and tetracycline. In summary, these comparative genomic analyses have demonstrated highly pathogenic and multidrug-resistant genetic profiles in C. werkmanii strains, indicating a virulence potential for this commensal and opportunistic human pathogen.

4.
Microb Genom ; 9(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37266976

RESUMO

Vibrio parahaemolyticus has been identified as an emerging human pathogen worldwide with cases undergoing a global expansion over recent decades in phase with climate change. New Zealand had remained free of outbreaks until 2019, but different outbreaks have been reported consecutively since then. To provide new insights into the recent emergence of cases associated with outbreak clones over recent years, a comparative genomic study was carried out using a selection of clinical (mostly outbreak) and environmental isolates of V. parahaemolyticus obtained in New Zealand between 1973 and 2021. Among 151 isolates of clinical (n=60) and environmental (n=91) origin, 47 sequence types (STs) were identified, including 31 novel STs. The population of environmental isolates generated 30 novel STs, whereas only 1 novel ST (ST2658) was identified among the population of clinical isolates. The novel clinical ST was a single-locus variant of the pandemic ST36 strain, indicating further evolution of this pandemic strain. The environmental isolates exhibited a significant genetic heterogeneity compared to the clinical isolates. The whole-genome phylogeny separated the population of clinical isolates from their environmental counterparts, clearly indicating their distant genetic relatedness. In addition to differences in ancestral profiles and genetic relatedness, these two groups of isolates exhibited a profound difference in their virulence profiles. While the entire population of clinical isolates harboured the thermostable direct haemolysin (tdh) and/or the thermostable-related haemolysin (trh), only a few isolates of environmental origin possessed the same virulence genes. In contrast to tdh and trh, adhesin-encoding genes, vpadF and MSHA, showed a significantly (P<0.001) greater association with the environmental isolates compared to the clinical isolates. The effectors, VopQ, VPA0450 and VopS, which belong to T3SS1, were ubiquitous, being present in each isolate regardless of its origin. The effectors VopC and VopA, which belong to T3SS2, were rarely detected in any of the examined isolates. Our data indicate that the clinical and environmental isolates of V. parahaemolyticus from New Zealand differ in their population structures, ancestral profiles, genetic relatedness and virulence profiles. In addition, we identified numerous unique non-synonymous single-nucleotide polymorphisms (nsSNPs) in adhesins and effectors, exclusively associated with the clinical isolates tested, which may suggest a possible role of these mutations in the overall virulence of the clinical isolates.


Assuntos
Vibrio parahaemolyticus , Fatores de Virulência , Humanos , Fatores de Virulência/genética , Vibrio parahaemolyticus/genética , Nova Zelândia/epidemiologia , Virulência/genética , Genômica
5.
Sci Total Environ ; 885: 163905, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142018

RESUMO

Tetrodotoxin (TTX), a potent neurotoxin mostly associated with pufferfish poisoning, is also found in bivalve shellfish. Recent studies into this emerging food safety threat reported TTX in a few, mainly estuarine, shellfish production areas in some European countries, including the United Kingdom. A pattern in occurrences has started to emerge, however the role of temperature on TTX has not been investigated in detail. Therefore, we conducted a large systematic TTX screening study, encompassing over 3500 bivalve samples collected throughout 2016 from 155 shellfish monitoring sites along the coast of Great Britain. Overall, we found that only 1.1 % of tested samples contained TTX above the reporting limit of 2 µg/kg whole shellfish flesh and these samples all originated from ten shellfish production sites in southern England. Subsequent continuous monitoring of selected areas over a five-year period showed a potential seasonal TTX accumulation in bivalves, starting in June when water temperatures reached around 15 °C. For the first time, satellite-derived data were also applied to investigate temperature differences between sites with and without confirmed presence of TTX in 2016. Although average annual temperatures were similar in both groups, daily mean values were higher in summer and lower in winter at sites where TTX was found. Here, temperature also increased significantly faster during late spring and early summer, the critical period for TTX. Our study supports the hypothesis that temperature is one of the key triggers of events leading to TTX accumulation in European bivalves. However, other factors are also likely to play an important role, including the presence or absence of a de novo biological source, which remains elusive.


Assuntos
Bivalves , Frutos do Mar , Animais , Tetrodotoxina , Temperatura , Alimentos Marinhos
6.
J Infect ; 87(2): 103-110, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37178807

RESUMO

BACKGROUND: Human metapneumovirus (HMPV) is an important aetiologic agent of respiratory tract infection (RTI). This study aimed to describe the prevalence, genetic diversity, and evolutionary dynamics of HMPV. METHODS: Laboratory-confirmed HMPV were characterised based on partial-coding G gene sequences with MEGA.v6.0. WGS was performed with Illumina, and evolutionary analyses with Datamonkey and Nextstrain. RESULTS: HMPV prevalence was 2.5%, peaking in February-April and with an alternation in the predominance of HMPV-A and -B until the emergence of SARS-CoV-2, not circulating until summer and autumn-winter 2021, with a higher prevalence and with the almost only circulation of A2c111dup. G and SH proteins were the most variable, and 70% of F protein was under negative selection. Mutation rate of HMPV genome was 6.95 × 10-4 substitutions/site/year. CONCLUSION: HMPV showed a significant morbidity until the emergence of SARS-CoV-2 pandemic in 2020, not circulating again until summer and autumn 2021, with a higher prevalence and with almost the only circulation of A2c111dup, probably due to a more efficient immune evasion mechanism. The F protein showed a very conserved nature, supporting the need for steric shielding. The tMRCA showed a recent emergence of the A2c variants carrying duplications, supporting the importance of virological surveillance.


Assuntos
COVID-19 , Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Humanos , Lactente , Metapneumovirus/genética , Infecções por Paramyxoviridae/epidemiologia , Espanha/epidemiologia , Genótipo , COVID-19/epidemiologia , SARS-CoV-2/genética , Infecções Respiratórias/epidemiologia , Filogenia
7.
Sci Rep ; 13(1): 3893, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959189

RESUMO

Vibrio vulnificus is an opportunistic bacterial pathogen, occurring in warm low-salinity waters. V. vulnificus wound infections due to seawater exposure are infrequent but mortality rates are high (~ 18%). Seawater bacterial concentrations are increasing but changing disease pattern assessments or climate change projections are rare. Here, using a 30-year database of V. vulnificus cases for the Eastern USA, changing disease distribution was assessed. An ecological niche model was developed, trained and validated to identify links to oceanographic and climate data. This model was used to predict future disease distribution using data simulated by seven Global Climate Models (GCMs) which belong to the newest Coupled Model Intercomparison Project (CMIP6). Risk was estimated by calculating the total population within 200 km of the disease distribution. Predictions were generated for different "pathways" of global socioeconomic development which incorporate projections of greenhouse gas emissions and demographic change. In Eastern USA between 1988 and 2018, V. vulnificus wound infections increased eightfold (10-80 cases p.a.) and the northern case limit shifted northwards 48 km p.a. By 2041-2060, V. vulnificus infections may expand their current range to encompass major population centres around New York (40.7°N). Combined with a growing and increasingly elderly population, annual case numbers may double. By 2081-2100 V. vulnificus infections may be present in every Eastern USA State under medium-to-high future emissions and warming. The projected expansion of V. vulnificus wound infections stresses the need for increased individual and public health awareness in these areas.


Assuntos
Vibrioses , Vibrio vulnificus , Infecção dos Ferimentos , Humanos , Idoso , Vibrioses/epidemiologia , América do Norte
8.
Anim Microbiome ; 5(1): 7, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739423

RESUMO

BACKGROUND: Anthropogenic disturbance has the potential to negatively affect wildlife health by altering food availability and diet composition, increasing the exposure to agrochemicals, and intensifying the contact with humans, domestic animals, and their pathogens. However, the impact of these factors on the fecal microbiome composition of wildlife hosts and its link to host health modulation remains barely explored. Here we investigated the composition of the fecal bacterial microbiome of the insectivorous bat Kuhl's pipistrelle (Pipistrellus kuhlii) dwelling in four environmental contexts with different levels of anthropogenic pressure. We analyzed their microbiome composition, structure and diversity through full-length 16S rRNA metabarcoding using the nanopore long-read sequencer MinION™. We hypothesized that the bacterial community structure of fecal samples would vary across the different scenarios, showing a decreased diversity and richness in samples from disturbed ecosystems. RESULTS: The fecal microbiomes of 31 bats from 4 scenarios were sequenced. A total of 4,829,302 reads were obtained with a taxonomic assignment percentage of 99.9% at genus level. Most abundant genera across all scenarios were Enterococcus, Escherichia/Shigella, Bacillus and Enterobacter. Alpha diversity varied significantly between the four scenarios (p < 0.05), showing the lowest Shannon index in bats from urban and intensive agriculture landscapes, while the highest alpha diversity value was found in near pristine landscapes. Beta diversity obtained by Bray-Curtis distance showed weak statistical differentiation of bacterial taxonomic profiles among scenarios. Furthermore, core community analysis showed that 1,293 genera were shared among localities. Differential abundance analyses showed that the highest differentially abundant taxa were found in near pristine landscapes, with the exception of the family Alcaligenaceae, which was also overrepresented in urban and intensive agriculture landscapes. CONCLUSIONS: This study suggests that near pristine and undisturbed landscapes could promote a more resilient gut microbiome in wild populations of P. kuhlii. These results highlight the potential of the fecal microbiome as a non-invasive bioindicator to assess insectivorous bats' health and as a key element of landscape conservation strategies.

9.
Adv Exp Med Biol ; 1404: 1-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36792868

RESUMO

The Vibrionaceae is a highly diverse family of aquatic bacteria. Some members of this ubiquitous group can cause a variety of diseases in humans ranging from cholera caused by Vibrio cholerae, severe septicemia caused by Vibrio vulnificus, to acute gastroenteritis by Vibrio parahaemolyticus. Planet Earth is experiencing unprecedented changes of planetary scale associated with climate change. These environmental perturbations paired with overpopulation and pollution are increasing the distribution of pathogenic Vibrios and exacerbating the risk of causing infections. In this chapter, we discuss various aspects of Vibrio infections within the context of the twenty-first century with a major emphasis on the aforementioned pathogenic species. Overall, we believe that the twenty-first century is posed to be both one full of challenges due to the rise of these pathogens, and also a catalyst for innovative and groundbreaking discoveries.


Assuntos
Cólera , Vibrioses , Vibrio cholerae , Vibrio parahaemolyticus , Vibrio vulnificus , Humanos , Vibrioses/epidemiologia , Vibrioses/microbiologia , Vibrio cholerae/genética , Vibrio parahaemolyticus/genética , Cólera/epidemiologia
10.
Adv Exp Med Biol ; 1404: 233-251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36792879

RESUMO

The epidemiological dynamics of V. parahaemolyticus´ infections have been characterized by the abrupt appearance of outbreaks in remote areas where these diseases had not been previously detected, without knowing the routes of entry of the pathogens in the new area. However, there are recent studies that show the link between the appearance of epidemic outbreaks of Vibrio and environmental factors such as oceanic transport of warm waters, which has provided a possible mechanism for the dispersion of Vibrio diseases globally. Despite this evidence, there is little information on the possible routes of entry and transport of infectious agents from endemic countries to the entire world. In this sense, the recent advances in genomic sequencing tools are making it possible to infer possible biogeographical patterns of diverse pathogens with relevance in public health like V. parahaemolyticus. In this chapter, we will address several general aspects about V. parahaemolyticus, including their microbiological and genetic detection, main virulence factors, and the epidemiology of genotypes involved in foodborne outbreaks globally.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Fatores de Virulência/genética , Saúde Pública , Surtos de Doenças
11.
Adv Exp Med Biol ; 1404: 337-352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36792883

RESUMO

When the first microbial genome sequences were published just 20 years ago, our understanding regarding the microbial world changed dramatically. The genomes of the first pathogenic vibrios sequenced, including Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus revealed a functional and phylogenetic diversity previously unimagined as well as a genome structure indelibly shaped by horizontal gene transfer. The initial glimpses into these organisms also revealed a genomic plasticity that allowed these bacteria to thrive in challenging and varied aquatic and marine environments, but critically also a suite of pathogenicity attributes. In this review we outline how our understanding of vibrios has changed over the last two decades with the advent of genomics and advances in bioinformatic and data analysis techniques, it has become possible to provide a more cohesive understanding regarding these bacteria: how these pathogens have evolved and emerged from environmental sources, their evolutionary routes through time and space, how they interact with other bacteria and the human host, as well as initiate disease. We outline novel approaches to the use of whole genome sequencing for this important group of bacteria and how new sequencing technologies may be applied to study these organisms in future studies.


Assuntos
Vibrio cholerae , Vibrio parahaemolyticus , Vibrio vulnificus , Humanos , Filogenia , Vibrio cholerae/genética , Vibrio parahaemolyticus/genética , Vibrio vulnificus/genética , Sequenciamento Completo do Genoma
12.
Curr Opin Biotechnol ; 80: 102898, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739640

RESUMO

It is critical to gain insight into how climate change impacts evolutionary responses within climate-sensitive pathogen populations, such as increased resilience, opportunistic responses and the emergence of dominant variants from highly variable genomic backgrounds and subsequent global dispersal. This review proposes a framework to support such analysis, by combining genomic evolutionary analysis with climate time-series data in a novel spatiotemporal dataframe for use within machine learning applications, to understand past and future evolutionary pathogen responses to climate change. Recommendations are presented to increase the feasibility of interdisciplinary applications, including the importance of robust spatiotemporal metadata accompanying genome submission to databases. Such workflows will inform accessible public health tools and early-warning systems, to aid decision-making and mitigate future human health threats.


Assuntos
Evolução Biológica , Mudança Climática , Humanos , Bases de Dados Factuais
13.
Mar Pollut Bull ; 188: 114685, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739716

RESUMO

The Great Barrier Reef (GBR) is the world's largest coral ecosystem and is threatened by climate change. This study investigated the impact of the 2016 Marine Heatwave (MHW) on plankton associated microbial communities along a ∼800 km transect in the GBR. 16S rRNA gene metabarcoding of archived plankton samples collected from November 2014 to August 2016 in this region showed a significant increase in Planctomycetes and bacteria belonging to the genus Vibrio and Synechococcus during and after the heatwave. Notably, Droplet Digital PCR and targeted metagenomic analysis applied on samples collected four months after the MHW event revealed the presence of several potential pathogenic Vibrio species previously associated with diseases in aquatic animals. Overall, the 2016 MHW significantly impacted the surface picoplankton community and fostered the spread of potentially pathogenic bacteria across the GBR providing an additional threat for marine biodiversity in this area.


Assuntos
Antozoários , Microbiota , Animais , Ecossistema , Recifes de Corais , Plâncton , RNA Ribossômico 16S , Austrália , Bactérias/genética
14.
Curr Opin Biotechnol ; 80: 102894, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36680847

RESUMO

Harmful marine bacteria, such as Vibrio or Aeromonas species, typically exist at low abundance in ocean environments but represent a reservoir from which epidemics can arise. Particularly, Vibrio strains and their associated infections are on the rise globally due to increasing sea surface temperature representing an emergent threat for human and animal health also being responsible for large economic losses in the aquaculture industry worldwide. New technological approaches are needed to improve strategies targeting these pathogens. This review discusses new approaches based on improved sampling strategies and novel analytical methods offering increased accuracy, high throughput, and informativeness to study and detect microbial pathogens in the marine environment. Detecting and characterizing ultra-low-abundance pathogenic strains can serve as a critical tool in risk management and outbreak prevention of diseases caused by emerging marine pathogens.


Assuntos
Vibrio , Animais , Humanos , Aquicultura/métodos , Temperatura , Oceanos e Mares
15.
Infect Genet Evol ; 106: 105380, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283634

RESUMO

Escherichia coli is a leading cause of human enteric diseases worldwide. The rapid and accurate causal agent identification to a particular source represents a crucial step in the establishment of safety and health measures in the affected human populations and would thus provide insights into the relationship of traits that may contribute for pathogen persistence in a particular reservoir. The objective of the present study was to characterize over two hundred E. coli strains from different isolation sources in Mexico by conducting a correspondence analysis to explore associations with the detected phylogenetic groups. The results indicated that E. coli strains, recovered from distinct sources in Mexico, were classified into phylogroups B1 (35.8%), A (27.8%), and D (12.3%) and were clustered to particular clades according to the predicted phylogroups. The results from correspondence analysis showed that E. coli populations from distinct sources in Mexico, belonging to different phylogroups, were not dispersed randomly and were associated with a particular isolation source. Phylogroup A was strongly associated with human sources, and the phylogroup B1 showed a significant relationship with food sources. Additionally, phylogroup D was also related to human sources. Phylogroup B2 was associated with herbivorous and omnivorous mammals. Moreover, common virulence genes in the examined E. coli strains, assigned to all phylogroups, were identified as essential markers for survival and invasion in the host. Although virulence profiles varied among the detected phylogroups, E. coli strains belonging to phylogroup D, associated with humans, were found to contain the largest virulence gene repertoire conferring for persistence and survival in the host. In summary, these findings provide fundamental information for a better characterization of pathogenic E. coli, recovered from distinct isolation sources in Mexico and would assist in the development of better tools for identifying potential transmission routes of contamination.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Humanos , Filogenia , Virulência/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/patologia , Fatores de Virulência/genética , Mamíferos
17.
Nat Microbiol ; 7(8): 1221-1229, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35918422

RESUMO

Controlling foodborne diseases requires robust outbreak detection and a comprehensive understanding of outbreak dynamics. Here, by integrating large-scale phylogenomic analysis of 3,642 isolates and epidemiological data, we performed 'data-driven' outbreak detection and described the long-term outbreak dynamics of the leading seafood-associated pathogen, Vibrio parahaemolyticus, in Shenzhen, China, over a 17-year period. Contradictory to the widely accepted notion that sporadic patients and independent point-source outbreaks dominated foodborne infections, we found that 71% of isolates from patients grouped into within-1-month clusters that differed by ≤6 single nucleotide polymorphisms, indicating putative outbreaks. Furthermore, we showed that despite the long time spans between clusters, 70% of them were genomically closely related and were inferred to arise from a small number of common sources, which provides evidence that hidden persistent reservoirs generated most of the outbreaks rather than independent point-sources. Phylogeographical analysis further revealed the geographical heterogeneity of outbreaks and identified a coastal district as the potential hotspot of outbreaks and as the hub and major source of cross-district spread events. Our findings provide a comprehensive picture of the long-term spatiotemporal dynamics of foodborne outbreaks and present a different perspective on the major source of foodborne infections, which will inform the design of future disease control strategies.


Assuntos
Doenças Transmitidas por Alimentos , Vibrioses , Vibrio parahaemolyticus , Surtos de Doenças , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Filogenia , Vibrioses/epidemiologia , Vibrio parahaemolyticus/genética
18.
Microorganisms ; 10(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889151

RESUMO

Antibiotic resistance genes (ARGs) are undergoing a remarkably rapid geographic expansion in various ecosystems, including pristine environments such as Antarctica. The study of ARGs and environmental resistance genes (ERGs) mechanisms could provide a better understanding of their origin, evolution, and dissemination in these pristine environments. Here, we describe the diversity of ARGs and ERGs and the importance of mobile genetic elements as a possible mechanism for the dissemination of resistance genes in Antarctica. We analyzed five soil metagenomes from Deception Island in Antarctica. Results showed that detected ARGs are associated with mechanisms such as antibiotic efflux, antibiotic inactivation, and target alteration. On the other hand, resistance to metals, surfactants, and aromatic hydrocarbons were the dominant ERGs. The taxonomy of ARGs showed that Pseudomonas, Psychrobacter, and Staphylococcus could be key taxa for studying antibiotic resistance and environmental resistance to stress in Deception Island. In addition, results showed that ARGs are mainly associated with phage-type mobile elements suggesting a potential role in their dissemination and prevalence. Finally, these results provide valuable information regarding the ARGs and ERGs in Deception Island including the potential contribution of mobile genetic elements to the spread of ARGs and ERGs in one of the least studied Antarctic ecosystems to date.

19.
Microbiol Spectr ; 10(4): e0118522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35856711

RESUMO

Actinobacillus pleuropneumoniae (APP) is the causative agent of pleuropneumonia in pigs, one of the most relevant bacterial respiratory diseases in the swine industry. To date, 19 serotypes have been described based on capsular polysaccharide typing with significant virulence dissimilarities. In this study, 16 APP isolates from Spanish origin were selected to perform antimicrobial susceptibility tests and comparative genomic analysis using whole genome sequencing (WGS). To obtain a more comprehensive worldwide molecular epidemiologic analyses, all APP whole genome assemblies available at the National Center for Biotechnology Information (NCBI) at the time of the study were also included. An in-house in silico PCR approach enabled the correct serotyping of unserotyped or incorrectly serotyped isolates and allowed for the discrimination between serotypes 9 and 11. A pangenome analysis identified the presence or absence of gene clusters to be serotype specific, as well as virulence profile analyses targeting the apx operons. Antimicrobial resistance genes were correlated to the presence of specific plasmids. Altogether, this study provides new insights into the genetic variability within APP serotypes, correlates phenotypic tests with bioinformatic analyses and manifests the benefits of populated databases for a better assessment of diversity and variability of relatively unknown pathogens. Overall, genomic comparative analysis enhances the understanding of transmission and epidemiological patterns of this species and suggests vertical transmission of the pathogen, including the resistance genes, within the Spanish integrated systems. IMPORTANCE Pleuropneumonia is one of the most relevant respiratory infections in the swine industry. Despite Actinobacillus pleuropneumoniae (APP) being one of the most important pathogens in the pig production, this is the first comparative study including all available whole genome sequencing data from NCBI. Moreover, this study also includes 16 APP isolates of Spanish origin with known epidemiological relationships through vertical integrated systems. Genomic comparisons provided a deeper understanding of molecular and epidemiological knowledge between different APP serotypes. Furthermore, determination of resistance and toxin profiles allowed correlation with the presence of mobile genetic elements and specific serotype, respectively.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Suínos , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Animais , Genômica , Pleuropneumonia/microbiologia , Pleuropneumonia/veterinária , Sorotipagem , Suínos , Doenças dos Suínos/microbiologia , Sequenciamento Completo do Genoma
20.
Microorganisms ; 10(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744732

RESUMO

Salmonella enterica is a leading cause of human gastrointestinal disease worldwide. Given that Salmonella is persistent in aquatic environments, this study examined the prevalence, levels and genotypic diversity of Salmonella isolates recovered from major rivers in an important agricultural region in northwestern Mexico. During a 13-month period, a total of 143 river water samples were collected and subjected to size-exclusion ultrafiltration, followed by enrichment, and selective media for Salmonella isolation and quantitation. The recovered Salmonella isolates were examined by next-generation sequencing for genome characterization. Salmonella prevalence in river water was lower in the winter months (0.65 MPN/100 mL) and significantly higher in the summer months (13.98 MPN/100 mL), and a Poisson regression model indicated a negative effect of pH and salinity and a positive effect of river water temperature (p = 0.00) on Salmonella levels. Molecular subtyping revealed Oranienburg, Anatum and Saintpaul were the most predominant Salmonella serovars. Single nucleotide polymorphism (SNP)-based phylogeny revealed that the detected 27 distinct serovars from river water clustered in two major clades. Multiple nonsynonymous SNPs were detected in stiA, sivH, and ratA, genes required for Salmonella fitness and survival, and these findings identified relevant markers to potentially develop improved methods for characterizing this pathogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...